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Abstract 

Dynamic balancing of an industrial manipulator using hexahedron point mass model and 

teaching learning based optimization is presented in this paper. The minimization problem is 

formulated using concept of dynamically equivalent system of point-masses in hexahedron 

configuration for each link such that positive values for all point masses and link‟s inertias are 

ensured. To compute the shaking forces and moments the dynamic equations of motion for 

manipulator are systematically converted into the parameters of the equimomental point 

masses. The recently developed, „Teaching Learning Based Optimization (TLBO)‟ is used to 

solve the optimization problem. The effectiveness of the methodology is demonstrated by 

applying it to a six-dof PUMA robot. shaking forces and moments at joints for the balanced 

and unbalanced PUMA manipulator are also provided to compare the result. The TLBO is a 

teaching-learning process inspired algorithm. It uses the mean value of the population and the 

best solution of the iteration to change the existing solution in the population, thereby 

improving the solution for the whole population and increasing the convergence rate. A 

MATLAB program is developed to find the design variables to minimize the shaking force 

and moment at the base of the robot. The objective function value obtained using TLBO is 

validated and compared with another population based solution i.e. GA and “fmincon”. It is 

observed that TLBO is better than that of GA in terms of computational effort.  

Keywords: Dynamic balancing, Teaching Learning Based Optimization (TLBO), Hexahedron 

point mass model, Shaking force and Shaking moment. 

1 Introduction 

The dynamic unbalance creates mechanical vibrations that induce noise, wear and 

fatigue etc. These are often undesired. A mechanism is called “Dynamically 

balanced”, if no shaking forces and no shaking moment result at all. Balanced 

manipulators do not exert vibrations and can have both low cycle times and high 

accuracy. Thus it is essential to reduce the amplitude of vibration of the frame due to 

shaking forces and moments  and also to smoothen out the highly fluctuating input 

torque to achieve the constant drive speed of the manipulator. The major 

disadvantage of existing dynamic balancing principles is that a considerable amount 

of mass and inertia is added to the system. Volkert van der Wijk et al., compared 

various dynamic balancing principles and stated that mass redistribution offers 

relatively lesser additional mass and additional inertia solution [1]. The shaking 
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torques and forces at joints are to be considered in modelling of industrial 

manipulators. In robotic literature [2-3], lot of emphasis has been given to eliminate 

the shaking moments and forces from the equations of motion in order to perform 

inverse and forward dynamics needed for the control and simulation of the robot, 

respectively. Kochev, reviewed various methods for complete balancing of shaking 

moments of planer linkages, most of these methods are based on mass redistribution, 

addition of counter weights to moving linkages, and attachments of rotating discs 

[4]. Very few [5-7] have treated it as optimization problem with randomly generated 

population based solutions such as genetic algorithm for optimization.   

For a given manipulator and its joint trajectories, the inertia-induced 

shaking moments and forces depend only upon the mass distribution of the moving 

links, i.e., the link masses, their mass centre locations and the inertias [8]. To 

minimize the shaking forces and moments, it is required to optimally distribute the 

masses of the links. This problem can be treated by the dynamically equivalent 

system of point masses, which is a convenient way to represent the inertia properties 

[9-10]. The dynamically equivalent system is also called equimomental system [11]. 

First, the links of a manipulator under study are represented by the 

equimomental system of point masses using hexahedron model with its CG 

coinciding with CG of link that ensures positive value for all point masses and offers 

practically implementable solutions. Chaudhary and Saha [10] developed the 

equations of motion in the parameters of point-mass that state the equivalence 

between the given system and the set of point-masses. These equations of motion are 

used for dynamic analysis. An optimization problem formulation is proposed to 

minimize the shaking forces/moments due to inertia forces at the joints of the 

industrial manipulator. The magnitudes of point masses are optimally distributed to 

reduce the inertia-induced forces and moments. This will minimize the shaking 

moments and forces at the joints of the manipulator. The Teaching Learning Based 

Optimization (TLBO) algorithm is used to solve optimization problem. This will 

minimize the shaking moments and forces at the joints of the manipulator apart from 

reducing the driving torque.  
Rao et al. [13], proposed a novel method called “Teaching- learning-based 

optimization” (TLBO) for designing mechanical components. It does not require any 

algorithm parameter to be tuned, as required in genetic algorithm, thus makes the  

implementation simpler. TLBO uses the best solution of the current iteration to 

change the existing solution in the population, thereby increasing the convergence 

rate. This newly developed optimization algorithm that has been used for various 

optimization problems like constrained mechanical design optimization, multi-

objective unconstrained and constrained functions, to solve complex bench mark 

functions and difficult engineering problems, discrete optimization of truss structures 

etc. [13-17]. Use of TLBO has been reported for optimizing process parameters as 

well [18-20]. So far no one has reported the use of the teaching-learning-based 

optimization (TLBO) technique for minimization of shaking forces, shaking 

moments in industrial manipulators.  

2    Hexahedron Six Point Mass Model 

To distribute link masses optimally, each link is treated as dynamically equivalent 

system of point masses. For this purpose a set of six point masses in hexahedron 

configuration as shown in Fig. 1, is defined. Body fixed frame xiyizi   is fixed to i
th
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link at its CG and oriented such that xi,yi,zi  become principal axes. It is assumed that 

five of the point masses, mij, are located at the vertices of a hexahedron. Subscripts i 

and j denote the i
th 

link and its j
th 

point mass, respectively.  The sixth point mass is 

assumed to be located at CG of the link.  The point masses are rigidly fixed to the 

frame   xiyizi. The two systems, the rigid link and the system of six point-masses, are 

dynamically equivalent, if (i) the sum of all point-masses equal the mass of link (ii) 

the CG of the set of point masses coincides with the CG of rigid link, giving three 

conditions (iii) the moment of inertias and product of inertias for distributed point-

masses is same as that of rigid link, giving six conditions.  

                                                           
Fig. 1 Hexahedron model of six point-masses         Fig.2 Coordinates of point masses 

 

Assuming following relationship of point masses and their distances along 

axes xi , yi and zi , it makes CG of six point masses in hexahedron configuration to 

coincide with CG of link at the origin, we get the conditions known as equimomental 

conditions for i
th

 link and are given as follows: 

                                                                   (1)                   

                                                                             (2) 

Where, mass, mi, mass centre coordinates ( ̅    ̅    ̅     the moment of inertia (Iixx, Iiyy, 

Iizz) and the product of inertia (Iixy, Iiyz, Iizx) are defined for i
th

 link. The coordinates 

(xij, yij, zij) of point mass mij are defined for j
th

 point mass of i
th

 link. 

Since all other coordinates are zeros for point masses 1,4,5 and 6 as shown 

in Fig. 2 and the location of masses 2 and 3 being symmetric,  the product of inertias  

become zeros. So that xi , yi  and zi are principal axes of the i
th

 link and the mass centre 

is at the origin, i.e.,  ̅      ̅        ̅ = 0. This arrangement automatically satisfies the 

six equimomental conditions pertaining to centre of mass and product of inertias, the 

remaining four conditions of total mass and inertia about three axes gives :  

                                                                                        (3) 

                               
         

     
                                                               

 
 
(4) 

                             
         

                                                     (5) 

                              
         

                                                   (6)  

Eqs. (3) – (6) contain 6 unknowns, three point masses mi1, mi4, mi5, and three 

coordinates xi2, yi1, zi5 . Assuming mi1 = 2mi5 = α mi , Eqs. (3) – (6) gives :     

                                                                                          (7)              

                      
                                                             (8) 
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                                                             (9) 

                               
                                                            (10) 

where, a constant α must satisfy, 1 > (1 - 3α) > 0, i.e. , α < 1/3. 

Finally ,knowing the mass and inertias of rigid links, Eqs. (7) – (10) provide 

unknown parameters of the point mass system. It does not contain negative point 

masses that being the problem with parallelepiped model in [9].                                                                                           

3.   Optimization Problem Formulation 
3.1   Optimality Criteria 

 
The RMS value is preferred over other optimal criteria, as it gives equal emphasis on 

the results of every time instances of the cycle, and every harmonic component. In 

order to reduce shaking forces and moments at joints, the following objective 

function is proposed based on the RMS values: 





n
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)(x      (11) 

where wi1 and wi2 are the weighting factors whose values may vary depending on an 

application and preference order, whereas 
c

if
~

and 
c
in~ are the RMS values of the 

shaking force, 
c
i

c
if f , and moment, 

c
i

c
in n , at the ith joint, respectively. We 

have taken both weighing factors as 1 so as to minimize the shaking force and the 

shaking moment both equally. The design variable vector x  is defined in the next 

sub section.  

3.2   Design Variables and Constraints 

 
Based on the equations of motion given in [10], the shaking forces and moments are 

expressed as the function of the parameters of the point-masses. The point masses

1im ,…., 
6im , of each link are taken as the design variables. Note that the locations 

of the point-masses for each link are fixed in the link-fixed frame. For a manipulator 

having n moving links, the 6n-vector of the design variables, x, is then defined as  

TT
n

T ]...,,[ 1 mmx         (12) 

where the 6-vector, im  is as follows: 

i [ ]T

i1 i2 i3 i4 i5 i6m  m  m  m  m  mm  

In which ijm  is as defined in six point mass hexahedron model. Considering n links 

in manipulator, the problem of minimization of shaking forces and moments is 

finally stated as  

Minimize 
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Subject to  

6

1

0i ij

j

m m


       for i = 1, 2, 3…6 & j ≠ 1,4  (13b)

              

0i ijm m  
  

for j =2, 3…6;  2 0i ijm m  
 
for j = 1, 4  (13c-d)

                                                       

                          

Where, a constant β is a fraction of point mass to link mass, say β =0.0001.The 

inequality (13b) ensures that the minimum link mass is mi. Constraints (13c) & (13d) 

are imposed to keep point masses more than zero.  

 

4.  Teaching Learning Based Optimization (TLBO) 

TLBO is a teaching-learning process inspired algorithm, proposed by Rao et al. [13].  

There are two basic modes of learning by student, one through teacher (termed as 

teacher‟s phase) and other through interacting with fellow students (termed as 

learner‟s phase). The output in TLBO algorithm is considered as result or grade of 

the learners which depends on the quality of a teacher, who is considered as highly 

learned person. Interactive learning among colleagues also has impact on result. In 

TLBO,  the group of learners is considered as population; different design variables 

are considered as different subjects offered to the learners and learners result is 

analogues to the „fitness‟ value of the optimization problem. In the entire population 

the best solution is considered as teacher. 

4.1 Teacher’s Phase 

In this phase, the teacher tries to increase the mean result of the class from any value 

M1 to his or her level. However, practically this is not possible and a teacher moves 

the mean of class from M1 to any other value M2 (M2 > M1), the difference 

between M2 and M1 depends on teacher‟s capability. The new value of design 

variable is obtained by adding the difference. 

Xnew,i  = Xold,i  + r i  * ( difference between mean, X  and X of teacher ). 

 

Where ri  is random number between 0 to 1. If the objective function value for new 

solution is better than that of old, f (Xnew,i) < f (Xold,i) ,  new solution is accepted 

otherwise  the old one is retained. This completes the, “Teacher‟s Phase”. 

 

4.2 Learner’s Phase    

In “Learner‟s Phase”, learners increase their knowledge by interaction among 

themselves. A learner learns new things, if the other learner has more knowledge 

than him/her. The learner i, improves his/her knowledge through interaction with any 

other learner j from the population. The improvement is based on comparison of 

their objective function values as follows, for minimization problem:  

Xnew,i  = Xold,i + r il  *(Xold,i –Xold,j), if  f (Xold,i) < f (Xold,j) and  

Xnew,i  = Xold,i + r il  *( Xold,j – Xold,i), if  f (Xold,i) > f (Xold,j) 

Where ril  is random number between 0 to 1. If the objective function value for new 

solution is better than that of old, f (Xnew,i) < f (Xold,i) ,  new solution is accepted 

otherwise  the old one is retained. This process completes one cycle of iteration. The 

process from computation of variable mean X onwards is repeated again, if the 
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termination criteria remain unsatisfied. The design vector for which f (X) is 

minimum represents the optimal solution. 

5 Application example 

The six-dof PUMA robot is considered here to minimize shaking forces and 

moments given in [10] and proposed methodology developed in sections 4 and 5. 

The Denavit–Hartenberg (DH) parameters, link‟s masses, joint trajectory and inertias 

of the manipulator given in [12] are taken here for analysis and comparison 

purposes. 

6 Results and Discussion 

Since TLBO result is based on random population generated initially, therefore thirty 

trial runs were made with population size of 7200 (200*36) and with 20 iterations 

(generations) same as that used for GA to arrive at mean value of objective function  

at all six joints of the manipulator. The function values obtained in these trials are: 

817.358, 819.837, 815.764, 814.532, 815.782, 815.875, 815.220, 817.083, 814.742, 

815.780, 819.288, 818.525, 813.649, 816.350, 815.596, 817.369, 817.702, 816.551, 

817.043, 814.466, 815.234, 821.529, 816.180, 817.709, 818.033, 817.548, 817.472, 

817.000, 817.510,and 819.608 giving mean value for optimized function using 

TLBO as 816.878 with standard deviation of 1.7297. Similarly, the GA results with 

population of 7200, 20 generation and initial population as equimomental point 

masses for unbalanced PUMA gives objective function values as 829.474, 827.834, 

828.763, 823.028, 825.795, and 828.900. The best value of objective function 

obtained in six trials of GA solution is 823.028. Further, the value of objective 

function obtained using “fmincon” tool box of MATLAB is 817.32.   This is very 

near to the value obtained using TLBO. 

The RMS values of the shaking forces and moments at each joint of the 

unbalanced (original), and optimized values obtained using TLBO and GA are given 

in Table 1. The shaking forces and moments values at joints 1to 6 pertains to mean 

objective function value of 817.000 and best objective function value of 823.021 for 

TLBO and GA respectively. To validate and compare the results, the same problem 

is solved using the “GA” algorithm of MATLAB Toolbox also. The objective 

function value obtained using TLBO is better than that obtained using GA (817.000 

< 823.021). The RMS values of shaking moments are reduced significantly at joints 

1 to 3 through optimization as is evident from data in table 1. Sum of shaking 

moment at joints 1 to 6 is 170.16, 32.87 and 38.90 N-m respectively for original (un-

balanced), TLBO optimized and GA optimized PUMA robot. Thus TLBO reduces 

the overall shaking moment further by nearly 3.5% vis-à-vis GA optimization. 
This demonstrates that TLBO offers better solution than GA and also takes much 

lower computational time (~35 minutes) than GA(~16 hrs) in view of much lower 

functional evaluations . Figs. 3 and 4 shows that the optimization value converge 

faster in case of TLBO vis-à-vis GA. The RMS values of shaking force at joints 1 to 

6 remains nearly same in all three cases as it depends on the total mass of the 

linkages which is kept same, we have redistributed the mass through optimization , 

which changes the inertia of link and reduces the shaking moment at joints of robot. 

 

Table 1 The RMS values of shaking moments and forces 
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PUMA  

ROBOT   RMS value of  Shaking Moment (N-m)    RMS value of Shaking Force (N)   

  

 

Jt 1 Jt 2 Jt 3 Jt 4 Jt 5 Jt 6 Jt 1 Jt 2 Jt 3 Jt 4 Jt 5 Jt 6 

Original 

(Unbalanced) 73.659 76.173 14.704 5.447 0.105 0.076 367.975 264.790 110.219 24.138 13.797 3.453 

Optimized 

(TLBO) 5.422 9.290 11.793 5.822 0.339 0.204 367.916 264.705 110.121 24.145 13.797 3.452 

% Reduction 92.6% 87.8% 19.8% ~same ~same 

~ 

same   No significant reduction ( ~ 0 % )   

Optimized 

(GA) 5.102 26.812 2.663 4.132 0.112 0.076 367.919 264.709 110.128 24.123 13.798 3.453 

% Reduction 93.1% 64.8% 81.9% ~same same same       

         No significant reduction ( ~ 0 % )  
 

 
Fig. 3 Function evaluations TLBO      Fig. 4 Function evaluations GA 

   
Fig. 5 Shaking moment at Joint 1    Fig. 6 Shaking moment at Joint 2 

 

However, the peak value of shaking force is reduced as is demonstrated by figure 7. 

The Variation of shaking forces and shaking moments with respect to time for one 

complete cycle, for the original unbalanced and optimized manipulators are shown in 

Figs. 5, 6 and 7 respectively. 
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Fig. 7 Shaking force at Joint 1 

 

8.  Conclusion 

The dynamic modelling of the manipulators is presented in terms of the 

equimomental system of point-masses using hexahedron model that ensures positive 

values for all point masses and eliminates non-linear constraints on link inertias. The 

optimization problem is solved using recently introduced algorithm TLBO. The 

results are compared and validated using the GA algorithm and “fmincon” of 

standard tool box in MATLAB. It is seen that the TLBO algorithm converges very 

fast with better optimization results as shown in Figs. 3 and 4 and Table 1. The 

hexahedron model provides the redistribution of the link masses such that the 

shaking moments and forces at joints are reduced to minimum, apart from providing 

positive values for all point masses and reducing the driving torques of the 

manipulator. Since the TLBO solution converges faster, it takes lesser computational 

time in comparison to GA. The results obtained using “fmincon” and TLBO are 

nearly same. Furthermore, the hexahedron model given solves the problem of 

negative masses faced with parallelepiped model. 
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