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Abstract 

 

Impact is a contact between two bodies for a short duration. Dynamics of 

impact is quite complex as it involves application of contact forces for a short 

period. Evaluation of impact and rolling contact dynamics is important to 

understand many contact problems in robotics, manipulation tasks, multibody 

dynamics, explosive loading, etc. In this paper, impact and rolling contacts between 

a rigid sphere and a soft material are modeled using multibond graph. A specimen 

of silicon rubber, which is a soft material, is discretized into a number of eight 

nodes brick elements. Stiffness, mass and damping matrices of the soft material are 

calculated using finite element method, and used as C, I and R field respectively in 

the bond graph model. A contact algorithm is developed to detect dynamically 

contact location and contact area as contact interface changes during rolling and 

impact. Contact interface between the sphere and the soft material is assumed to be 

viscoelastic, and modeled using spring-damper subsystems along normal, tangential 

and bi-normal directions. Stick-slip friction between the two contacting surfaces is 

modeled using Kelvin-Voigt model. A rigid sphere is thrown on the soft material 

with some horizontal velocity, and it bounces many times and then rolls on the soft 

material before attaining a state of static equilibrium. The model determines contact 

area and spatiotemporal distribution of contact forces during impact and rolling 

contact. Dynamics of the soft material during compression and restitution along 

with the dynamics of the sphere is evaluated from the model. 

Keywords: Impact, Contact dynamics, Bond graph, FEM, Viscoelastic  

1 Introduction 

Contact between two bodies may be a continuous contact or an impact contact. There 

is continuous contact during rolling or sliding of two contacting surfaces. Impact is a 

contact phenomenon between two colliding bodies. Impact occurs for short duration 

with sudden dissipation of energy. Dynamics of impact and rolling contact is 

important to understand many problems of robotics, manipulation tasks, multibody 

dynamics, astrophysics, explosive loading, press work, etc.  Evaluation of dynamics 
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of impact and rolling contact is quite complex and challenging because it involves 

dynamic change in contact area and distribution of contact forces. During impact, 

contact forces are applied over contact area for a short duration. It is important to 

calculate the instant of collision and contact location along with the distribution of 

contact forces. Impact contact can be modeled using impulse momentum principle. 

Dissipation of kinetic energy can be taken into account using coefficient of 

restitution. The approach does not calculate distribution of contact forces over the 

contact region [1]. Impact can also be modeled considering stress wave propagation 

[2]. Hertz theory augmented with damping to consider dissipation of energy is also 

used to determine force deformation relation that is used to calculate maximum 

indentation and period of impact [3-4]. Most of impact cases are neither perfectly 

elastic nor perfectly inelastic, and partial loss of kinetic energy is expressed using 

coefficient of restitution.  The above approaches don't predict distribution of contact 

forces over contact area during a rigid-soft impact and rolling contact. Dynamics of 

impact and rolling contact has not yet been solved in systematic and algorithmic 

manner. 

Bond graph is a graphical representation of dynamics of a physical system. The 

bond graph model is developed on the basis of power flow among various 

subsystems of a system [5-6]. Each bond shows clearly cause-effect relationship, and 

causality of bonds facilitates algorithmic derivation of first order states differential 

equations. The equations can be integrated numerically to evaluate dynamics of the 

physical systems. 

Bond graph model of dynamics of soft contact interaction between a rigid body 

and a soft material has already been developed for planar case. The model was also 

validated experimentally of static case [7]. The model was applied to different 

geometries of the rigid bodies [8-10]. Bond graph approach has been used to solve 

different problems of contact mechanics. Merzouki et al. modeled dynamics of tyre-

road interface using bond graph approach [11]. Bond graph is a unified approach and 

well suited to model systems from all energy domains.  

In this work, contact model has been extended to spatial case. A specimen of 

silicon rubber is taken as a soft material. Stiffness, damping and inertia of the soft 

material affect impact dynamics. Stiffness and inertia matrices are calculated using 

finite element analysis and used as C and I fields in the bond graph model. A contact 

algorithm is developed to detect contact region and duration of contact. A rigid 

spherical ball is thrown with a horizontal force on the soft material underlay. It 

bounces on the soft material many times and rolls over it. Its translational and 

angular motions are stopped using proportional-derivative controllers, and it is 

allowed to settle in a state of static equilibrium. Contact interface between colliding 

rigid body and the soft material is assumed to be viscoelastic and modeled using 

spring-damper subsystems along tangent, normal and bi-normal directions. Stick-slip 

friction is considered between two surfaces. The model determines spatiotemporal 

distribution of contact forces over the contact area along with the dynamics of 

spherical ball and the soft material.  

Calculation of C and R fields using finite element analysis is explained in 

section 2. Bond graph modeling of rigid body dynamics, soft material and contact 

interface is presented in section 3. MATLAB code is generated directly from the 

bond graph model and model is integrated numerically using ordinary differential 

equation (ODE) solver. The simulation results are presented in section 4. The work is 

concluded at the end of the paper in section 5.  
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2 Calculation of C and I Fields for the Soft Material 

A specimen of silicon rubber of 0.2 m length, 0.04 m width and 0.03 m height is 

taken as a soft material. The material continuum is discretized into N number of eight 

nodes brick elements. An eight nodes hexahedron brick element is shown in Fig. 1. 

 

Figure 1: (a) Hexahedron element in Cartesian X, Y, Z coordinates. (b) Isoparametric 

hexahedron element in natural r, s, t coordinates.  

Linear interpolation shape function of thi node is given by Eq. (1). The value of iN  

shape function is 1 at thi node and 0 at the remaining nodes in an element.  
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Each node is having three degree of freedom along X, Y and Z axes. Displacement 

field is given by Eq. (2). 
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where eQ  is nodal displacement vector. Using the principle of virtual work, 

local stiffness matrix for each element is calculated [13-14] as given in Eq. 

(3)  
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Where matrix  B  contains derivatives of shape functions,   6 6D  is a material 

matrix and  J is a Jacobian matrix. Local stiffness matrix is calculated by 

integrating Eq. (3) using six points Guassian quadrature rules. Local stiffness 

matrices are assembled into a global stiffness matrix   3 3N NK  which is used as C 

field in the bond graph model of the soft material. Global inertia matrix   3 3N NI 

is also calculated using same shape functions and used as I field in the bond graph 

model. Damping of the soft material is considered to be constant and used as R field 

as   3 3R I   . Bond graph models for dynamics of the soft material, rigid body 

dynamics are developed and explained in the next section. 

3 Bond Graph Modeling  

Bond graph models for rigid body dynamics, soft material and contact interface for 

planar case have already been developed and presented in [8-9]. In this work, the 

model is extended for spatial case of soft contact interaction. To make the paper self-

sufficient, some repetition is required. The bond graph model for soft contact 

interaction is shown in Fig. 2. In the model, vector bonds with cardinality 3 are 

shown by thick half arrows, and scalar bonds are shown by thin half arrows.  

 

Figure 2: Bond graph model for spatial case of soft contact interaction. 

A spherical ball is taken as a rigid body, and it is dropped on the soft material. It 

bounces many times before attaining state of static equilibrium. Velocity of any point 

iP on the surface of the sphere is given as, 
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Where 0

0 Cr is translational velocity and 0

0 B is angular velocity of the body observed 

and expressed in inertial frame. The bond graph model for the rigid body is 

developed on the basis of kinematics of any point iP , and translational and rotational 

inertia are added to determine the dynamics. An algorithm to detect the contact 

location is developed. The position of each node on the upper layer of the soft 

material is determined with respect to the center of mass (CM) of the ball. The node 

which satisfies the constraint given by Eq. (5) contacts the ball. 

 0 
iC Sr Radius   (5) 

where 
0

iC Sr is position of th

iS node from the CM of the ball. Contact between the ball 

and the soft material is modeled using penalty approach with additional dissipation. 

The th

iS  contact node is allowed to penetrate in the geometry of the spherical ball. 

Contact interface along normal direction is modeled using spring-damper subsystem. 

The restoring force directly proportional to the depth of penetration is generated, and 

further penetration is prevented. Unit vector normal to the point of contact iP is 

determined as given in Eq.(6), and spring-damper subsystem is inserted between the 

contact point iP  on the ball and contact node iS on the soft material along normal 

direction as shown in Fig. (3). 
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Friction at the contact interface is considered to be stick-slip friction. Unit vector 0 ˆ
it

along tangent to point of contact is considered along the direction of relative velocity 

of point iP with respect to the th

iS node. Tangential unit vector 0 ˆ
it  is determined as 

given in Eq. (7). 
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where 
0

i iS Pr is relative velocity of the point iP with respect to the contact node iS . 

Friction is modeled using spring-damper subsystem that is inserted between the point 

iP and the node iS  along tangent direction as shown in Fig. (3). The node iS  

remains attached with the point iP within the range of static friction. Modeling of 

friction is done on the same lines as presented in [8-9]. Unit vector along bi-normal 

direction 
0 ˆ

ib is determined as given in Eq. (8). 

 0 0 0ˆ ˆˆ i i ib n t   (8) 

The orientation of 
thi moving frame which is considered at the 

thi contact point is 

given by 0: iMTF R 
   as, 
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 0 0 0 0ˆˆ ˆ      i i i iR t b n   (9) 

 

Figure 3: The rigid sphere rests on the soft material in state of static equilibrium is 

shown along with contact interface in tangent, normal and bi-normal directions.  

Contact forces at each th

iS contact node, on the sphere and total moment that acts on 

the sphere are determined using the same approach as presented in [8-9]. MATLAB 

code is generated from the bond graph model and system states equations are solved 

numerically using ordinary differential equation solver (ODE45) available. 

Simulation results for both impact and rolling contact are presented in the next 

section. 
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is 2.42 mm as shown in Fig. (4). The position of the CM of the sphere when it is 

placed on the undeformed soft material is shown by red horizontal line. 

 
Figure 4: Z-coordinates of center of mass of the sphere. The soft material is 

deformed by 7.7 mm at the first impact. 

 

Case (2): The sphere is thrown on the soft material from a height of 0.01 m with 

a force of 5 N along horizontal direction. The horizontal force is applied for a short 

duration. It falls on the soft material and bounces many times, and then it starts 

rolling on the soft material. The position of sphere at two different instances of time 

is shown in Fig. (5).  

The sphere is allowed to roll up to a distance of 0.1511 m on the soft material. 

Its translational motion along X and Y axes, and rotational motion is stopped using 

proportional-derivative (PD) controllers, and it is allowed to attain state of static 

equilibrium. X, Y and Z coordinates of the sphere is shown in Fig. (6). Z-coordinates 

indicate bouncing of the ball, and then resting on the soft material at the end. 

The X-component of translational momentum and Y- component of the angular 

momentum the sphere is shown in Fig. (7). The PD controllers starts working at 1.5 

s. The sphere takes approximately 2.5 s to be in state of static equilibrium. The 

model determines soft contact dynamics completely. 
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(b) 

Figure 5: (a) Position of the sphere at time 0 s. (b) The position of the sphere at time 

1.312 s. It rolls on the soft material as indicated by position of red circle on the 

periphery of the sphere. 

 
Figure 6: Coordinates of the CM of the sphere with respect to time. 

 
Figure 7: X-component of translational momentum and Y-component of angular 

momentum of the sphere. 
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flows is clearly understood. The model determines spatiotemporal contact location 

and contact forces during impact and rolling. The deformation of the soft material 

with restitution is obtained during simulation. The results clearly indicate the 

dissipation of energy during bouncing of the sphere. The bond graph approach is an 

algorithmic approach to evaluate contact dynamics. The model will be extended for 

manipulation of an object using soft fingers. The model is useful for development of 

anthropomorphic soft fingers for object manipulation in robotics hand, and 

understanding the tactile perception of human hand. The model will be used to 

develop control algorithm for simple manipulation task like holding and writing 

using a pencil. 
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