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Abstract 

 
In this paper, an initially straight beam with torsional springs at its two hinged 

ends is subjected to an axial force and its buckling mode shapes are found. Any 
shape which is a linear combination of the modes is taken as the as-fabricated 
stress-free form and then subjected to a transverse actuating force. Post-buckling 
analysis is used to compute the force-displacement characteristic of such a beam 
and thereby check if bistability exists. Two special cases of the torsion spring 
constants being very large and zero are presented. The former is a known result 
where a cosine curve is the fundamental buckling mode that does not give bistability 
unless its asymmetric second mode shape is avoided by a physical constraint. When 
the spring constant is zero, a single sine curve profile, which is the fundamental 
mode, can be made bistable without having to physically constrain the asymmetric 
buckling modes. This is realized when pinned-pinned boundary condition is used, 
which further allows the element to have enhanced range of travel between its two 
stable states, reduced switching force, and provision for secondary lateral actuation. 
To realise a monolithic compliant bistable element without any kinematic joints, 
torsion springs are substituted with equivalent revolute flexures. Physical 
embodiments of three types of bistable curved beams, namely, fixed-fixed, pinned-
pinned, and revolute flexure-based, are presented.  

Keywords: Fully-compliant mechanisms, revolute flexures, buckling modes 

1 Introduction 
Mechanisms which have two force-free stable equilibrium positions in their range of 
motion are called bistable mechanisms. Their characteristic force and energy graphs 
are shown in Fig. 1. Bistable mechanisms are used in both macro-scale and micro-
scale applications. Relays [1][2], micro-actuators [3] micro-valves [4] and 
mechanical memory components [5] are examples of bistable micro devices. Circuit 
breakers, switches, easy-chairs  [6] and rear trunk lids of cars  [7] are examples of 
macro-scale bistable devices. In this paper we present a generalized method to 
investigate the bistability of curved beams and to design monolithic fully-compliant 
bistable mechanisms with enhanced performance.  
 One way to obtain bistability in curved beams is to use linear combinations of 
buckling mode shapes of a straight beam. Most bistable mechanism reported in the 
literature employ fixed-fixed boundary conditions. For fixed-fixed boundary 
conditions, the mode shapes of a straight beam are as shown in Fig. 2. If the first 
cosine buckling mode shape is used as the bistable mechanism’s as-fabricated shape, 
Qui et at. [8] proved that the mechanism does not exhibit bistability unless its 
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asymmetric second mode shape is prevented by a physical constraint. They proposed 
a monolithic compliant bistable mechanism that uses two cosine curved centrally-
clamped parallel beams shown in Fig. 3 as its as-fabricated shape. Such a shape is 
given by  
 𝑤𝑤� =

ℎ
2
�1 − cos �

2𝜋𝜋𝜋𝜋
𝐿𝐿
�� (1) 

where ℎ is the apex height of the beam and 𝐿𝐿 distance between the ends. 

 
Fig. 1. Bistable mechanism force and energy behaviour 

 

 
Fig. 2. Fixed-fixed boundary condition mode shapes 

 
Fig. 3. Two cosine curved centrally-clamped parallel beams bistable mechanism 

 
 On the other hand, if pinned-pinned boundary conditions are used, the modes 
shapes are as shown in Fig. 4. A single sine curve profile, which is the fundamental 
mode, can be made bistable without having to physically constrain the asymmetric 
buckling modes. It is given by 
 𝑤𝑤� = ℎ sin �

𝜋𝜋𝜋𝜋
𝐿𝐿
� (2) 

A bistable curved beam with pinned-pinned boundary conditions possesses 
advantages over the curved fixed-fixed beam. They have enhanced range of travel 
between its two stable states, reduced switching force, and provision for secondary 
lateral actuation. However, pin joints at micro scale lead to difficulties in 
manufacturing and problems in operation due to friction and wear. Therefore, the 
intermediate case of hinged ends with rotational flexures is an option worth 
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exploring. This approach, as demonstrated in this paper, gives rise to hinge-free 
monolithic designs while retaining the aforementioned three advantages. 
   

 
Fig. 4. Pinned-pinned boundary condition mode shapes 

In this paper, we propose to replace the pin joints with compliant revolute joints. 
Towards this, a bistable element is designed by following a systematic buckling 
analysis-based procedure. The torsional stiffness is lumped into a torsion spring at 
the revolute joint for the purposes of modelling. The buckling mode shapes for such 
a beam are found in Section 2. The as-fabricated profile is taken as a linear 
combination of the buckling modes. The potential energy of the system is found and 
minimized with respect to mode weights to obtain the force-displacement 
relationship, which can be used to check if the mechanism is bistable.  In Section 3, 
we present designs of three types of bistable elements, namely, fixed-fixed, pinned-
pinned, and revolute flexure-based. 

2 Analysis of the beam with general boundary 
conditions 

2.1 Buckling Analysis 

The governing differential equation for a generally constrained beam shown in Fig. 
5, subjected to axial load 𝑃𝑃 is given by 
 

𝐸𝐸𝐸𝐸
𝑑𝑑4𝑤𝑤
𝑑𝑑𝜋𝜋4

+ 𝑃𝑃
𝑑𝑑2𝑤𝑤
𝑑𝑑𝜋𝜋2

= 0 (3) 

where 𝑤𝑤 is the transverse displacement of the beam perpendicular to the axial force, 
𝐸𝐸 is the Young’s modulus of the material, and 𝐸𝐸 is area moment of inertia of the 
cross-section of the beam. Further, the length of the beam is 𝐿𝐿, the axial force 𝑃𝑃 and 
the torsional spring constant is 𝜅𝜅. 

 
Fig. 5. A generally constrained beam subjected to axial force 

We use the notation 𝑀𝑀 to condense the force, material property and cross-section 
property. Note that 𝑀𝑀 here does not stand for the bending moment. 

P 
𝜅𝜅 𝜅𝜅 

 x=0                                                                                           x=L 
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𝑀𝑀 = �𝑃𝑃

𝐸𝐸𝐸𝐸
    (4) 

The solution to Eq. (3) is of the form  
 𝑑𝑑2𝑤𝑤

𝑑𝑑𝜋𝜋2
= 𝐴𝐴 cos(𝑀𝑀𝜋𝜋) + 𝐵𝐵 sin(𝑀𝑀𝜋𝜋) (5) 

By integrating twice, we get 
 𝑤𝑤 = −

𝐴𝐴
𝑀𝑀2 cos(𝑀𝑀𝜋𝜋) −

𝐵𝐵
𝑀𝑀2 sin(𝑀𝑀𝜋𝜋) + 𝐶𝐶𝜋𝜋 + 𝐷𝐷 (6) 

where 𝐴𝐴, B, 𝐶𝐶 and 𝐷𝐷 are constants. The boundary conditions are given by 
 𝑤𝑤|𝑥𝑥=0 = 𝑤𝑤|𝑥𝑥=𝐿𝐿 = 0 (7) 

 
𝐸𝐸𝐸𝐸
𝑑𝑑2𝑤𝑤
𝑑𝑑𝜋𝜋2

�
𝑥𝑥=0

= 𝜅𝜅
𝑑𝑑𝑤𝑤
𝑑𝑑𝜋𝜋

�
𝑥𝑥=0

   ,    𝐸𝐸𝐸𝐸
𝑑𝑑2𝑤𝑤
𝑑𝑑𝜋𝜋2

�
𝑥𝑥=𝐿𝐿

= 𝜅𝜅
𝑑𝑑𝑤𝑤
𝑑𝑑𝜋𝜋

�
𝑥𝑥=𝐿𝐿

 (8) 

By applying the boundary conditions in Eq. (5) and Eq. (6), we get 
 𝐶𝐶 =

𝐸𝐸𝐸𝐸𝐴𝐴
𝜅𝜅

+
𝐵𝐵
𝑀𝑀

 

𝐷𝐷 =
𝐴𝐴
𝑀𝑀2 

(9) 

Using Eqs. (5), (6), (7), (8) and (9) to reduce to a system of two equations in two 
unknowns 𝐴𝐴 and 𝐵𝐵  gives rise to 
 

�
−

cos(𝑀𝑀𝐿𝐿)
𝑀𝑀2 +

1
𝑀𝑀2 +

𝐸𝐸𝐸𝐸𝐿𝐿
𝜅𝜅

−
sin(𝑀𝑀𝐿𝐿)
𝑀𝑀2 +

𝐿𝐿
𝑀𝑀

cos(𝑀𝑀𝐿𝐿) −
𝜅𝜅 sin(𝑀𝑀𝐿𝐿)
𝑀𝑀𝐸𝐸𝐸𝐸

− 1 sin(𝑀𝑀𝐿𝐿) +
𝜅𝜅 cos(𝑀𝑀𝐿𝐿)
𝑀𝑀𝐸𝐸𝐸𝐸

−
𝜅𝜅

𝑀𝑀𝐸𝐸𝐸𝐸

� �𝐴𝐴𝐵𝐵� = �0
0� 

(10) 

For a non-trivial solution, we equate the determinant of the matrix in Eq. (10) to 
zero, which yields the condition: 
 

𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑀𝑀𝐿𝐿
2
� �𝑐𝑐𝑐𝑐𝑠𝑠 �

𝑀𝑀𝐿𝐿
2
� �
𝐸𝐸2𝐸𝐸2𝐿𝐿
𝜅𝜅2

+
𝐿𝐿
𝑀𝑀2� −

2
𝑀𝑀3 𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑀𝑀𝐿𝐿
2
�� = 0 (11) 

Eq. (11) can be used to find the buckling mode shapes. For 𝜅𝜅 = 0, the mode 
shapes are the sine mode shapes as shown in Fig. 4. For 𝜅𝜅 = ∞, the mode shapes are 
the cosine mode shapes as shown in Fig. 2. For intermediate values, with geometric 
and material parameters shown in Table 1, the buckling mode shapes are as shown in 
Fig. 6. Here 𝑏𝑏 is the out-of-plane depth of the beam and 𝑡𝑡 is the thickness of the 
beam. 

 
Table 1. Geometric and material parameters of a beam 

S.No. Parameter Value 
1 L 0.125 m 
2 b 0.005 m 
3 t 0.001 m 
4 E 2.1 GPa 

5 h 0.011 m 
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a. 𝜅𝜅 = 0.00525 Nm/rad 

 
b. 𝜅𝜅 = 0.01 Nm/rad 

 
c. 𝜅𝜅 = 0.2 Nm/rad 

Fig. 6. Buckling mode shapes for a beam with different torsional stiffness values 

For 𝜅𝜅 > 0.503 Nm/rad, the mode shapes closely resemble those of fixed-fixed 
boundary condition. For 𝜅𝜅 < 0.01 Nm/rad, the mode shapes closely resemble those 
of pinned-pinned boundary condition.  

2.2 Post-buckling analysis  

Any shape which is a combination of the buckling modes can be taken as the as-
fabricated shape of the bistable element (𝑤𝑤�). When the element of such a shape is 
subjected to a transverse force, it may or may not exhibit bistability. We now discuss 
a method to check for the bistability.  

The buckling mode shapes found in Section 2.1 are orthonormal to one another. 
They form the basis vectors for the given torsional stiffness, i.e., any shape can be 
written as a linear combination of these basis vectors. Hence, the deformed shape of 
the bistable beam can also be written as a linear combination of the basis vectors. For 
simplicity, we will first assume the deformed shape (𝑤𝑤) of the beam to be a linear 
combination of the first two mode shapes, i.e.  
 𝑤𝑤 = 𝐴𝐴1𝑤𝑤1 + 𝐴𝐴2𝑤𝑤2 (11) 
where 𝐴𝐴1 and 𝐴𝐴2 are the mode weights. In order to determine the force-displacement 
curve of the bistable element, we will minimize the potential energy of the system 
with respect to both 𝐴𝐴1 and 𝐴𝐴2. The potential energy is given by 
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𝑃𝑃𝐸𝐸 = 𝑆𝑆𝐸𝐸𝑏𝑏 + 𝑆𝑆𝐸𝐸𝑐𝑐 −𝑊𝑊𝑃𝑃𝑓𝑓 +

1
2
𝜅𝜅 �
𝑑𝑑𝑤𝑤
𝑑𝑑𝜋𝜋

�
𝑥𝑥=0

�
2

+
1
2
𝜅𝜅 �
𝑑𝑑𝑤𝑤
𝑑𝑑𝜋𝜋

�
𝑥𝑥=𝐿𝐿

�
2

  (12) 

where 𝑆𝑆𝐸𝐸𝑏𝑏 is the strain energy associated with the bending of the element, 𝑆𝑆𝐸𝐸𝑐𝑐  is the 
strain energy associated with deformation due to compression and 𝑊𝑊𝑃𝑃𝑓𝑓 is the work 
potential due to transverse force 𝑓𝑓. When more than one beam element is used, the 
bending energy and compression energy for each element has to be accounted for. 
The work potential term however, remains the same. For example, in the two cosine 
curved mechanism (Fig. 3), an additional  𝑆𝑆𝐸𝐸𝑏𝑏 + 𝑆𝑆𝐸𝐸𝑐𝑐  should be added to Eq. (13) as 
there are two beam elements. 𝑆𝑆𝐸𝐸𝑏𝑏 and 𝑆𝑆𝐸𝐸𝑐𝑐  for a single beam element are given by 
 

𝑆𝑆𝐸𝐸𝑏𝑏 =
𝐸𝐸𝐸𝐸
2
� �

𝑑𝑑2𝑤𝑤�
𝑑𝑑𝜋𝜋2

−
𝑑𝑑2𝑤𝑤
𝑑𝑑𝜋𝜋2

�
2

𝑑𝑑𝜋𝜋
𝐿𝐿

0
 (13) 

 
𝑆𝑆𝐸𝐸𝑐𝑐 = −

𝐿𝐿2𝑏𝑏𝑡𝑡
𝐸𝐸

�𝑠𝑠 −
𝑠𝑠2

2�̅�𝑠
−
�̅�𝑠
2
� 

𝑠𝑠 = � �1 + �
𝑑𝑑𝑤𝑤
𝑑𝑑𝜋𝜋

�
2

𝑑𝑑𝜋𝜋
𝐿𝐿

0
≈ � �1 +

1
2
�
𝑑𝑑𝑤𝑤
𝑑𝑑𝜋𝜋

�
2

�
𝐿𝐿

0
𝑑𝑑𝜋𝜋 

�̅�𝑠 = � �1 +
1
2
�
𝑑𝑑𝑤𝑤�
𝑑𝑑𝜋𝜋

�
2

�
𝐿𝐿

0
𝑑𝑑𝜋𝜋 

(14) 

 𝑊𝑊𝑃𝑃𝑓𝑓 = −𝑓𝑓𝑑𝑑 (15) 
 𝑑𝑑 = 𝑤𝑤� �

𝐿𝐿
2
� − 𝑤𝑤 �

𝐿𝐿
2
� (16) 

For static equilibrium, we have: 
 𝜕𝜕(𝑃𝑃𝐸𝐸)

𝜕𝜕𝐴𝐴1
= 0 (17) 

 𝜕𝜕(𝑃𝑃𝐸𝐸)
𝜕𝜕𝐴𝐴2

= 0 (18) 

Equations (17), (18) and (19) become a system of three equations in three 
unknowns: 𝑓𝑓, 𝐴𝐴1 and 𝐴𝐴2. There are two possible solutions to this system: one when 
the energy of the system does not equal the energy of the second buckling mode, and 
the other when it does. Solving both numerically gives the force-displacement curve. 
Similarly, when we consider more than two mode shapes, we get additional 
equations to solve.  

2.3 An illustrative example 

To illustrate the method, we consider the split-tube flexure described in [9] where 
torsional stiffness is 𝜅𝜅 = 0.00525. The mode shapes can be found using Eq. (11) are 
shown in Fig. 6a. The as-fabricated shape is taken to be the first mode. For the first 
mode, the values of constants in Eq. (6) are given by 
 𝐴𝐴 = 0.2205,𝐵𝐵 = −1.0000,𝐶𝐶 = −0.002,𝐷𝐷 = 0.0003,𝑀𝑀 = 27.1263 (19) 

Then Eq. (6) becomes 
 𝑤𝑤 = (2.9887 cos(27.1623𝜋𝜋) + 14 sin(27.1623𝜋𝜋) − 20𝜋𝜋 + 3)10−4 (20) 
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Removing the constant terms and modifying the equation such that ℎ would be 
the apex height in meters, the equation of the as-fabricated shape of the bistable 
element is given by 
 𝑤𝑤� = ℎ(−0.1918 cos(27.1623𝜋𝜋) + 0.8699 sin(27.1623𝜋𝜋) − 1.2836𝜋𝜋

+ 0.1925) 
(21) 

The bistable element is shown in Fig. 7 and the force-displacement curve is 
shown in Fig. 8. Fig. 8 shows a curve and a straight line, corresponding the two 
solutions discussed in the end of Section 2.2. As the element is deformed, it travels 
along the curve until it reaches the dotted line, corresponding to the second buckling 
mode, as shown in Fig. 8a. At the point the curve intersects the straight line, it 
deforms into the second buckling mode shape (Fig. 8b). It then travels along the 
straight line till it once again intersects the curve. At this point, the element returns to 
the first buckling mode shape (Fig. 8c) and reaches the second equilibrium state. 
Hence, the actual force-displacement curve is a hybrid that switches between the 
curve and the straight line at the intersections. It should be observed in Fig. 8c, that 
the point at which the element returns to the first buckling mode is below the zero 
force line, and hence, the element is bistable. If on the other hand, the intersection 
point was above the zero-force line, the mechanism would bounce back when the 
actuating force is released, and hence, wouldn’t be bistable. 
 

 
Fig. 7. Bistable element using the first mode shape as the as-fabricated shape for 𝜅𝜅 =
0.00525 

 
a. Hybrid force-displacement curve for both solutions 

7 
 



2nd International and 17th National Conference on Machines and Mechanisms  iNaCoMM2015-73 
 

  
b. Enlarged view of the first intersection 
where element switches to second mode 

c. Enlarged view of the second intersection 
where element returns to first mode 

Fig. 8. Force-displacement curve for the bistable element using the first mode shape 
as the as-fabricated shape for 𝜅𝜅 = 0.0052 

3 Examples of bistable mechanisms synthesized 
The methodology described in Section 2 is used to synthesize bistable mechanisms 
for different values of torsional stiffness. All the designs shown use the geometric 
and material properties shown in Table 1. Fig. 9a shows a single cosine curve 
mechanism for fixed-fixed boundary conditions. As seen in force-displacement 
curve, the curve is only marginally below the zero-force line. A small disturbance 
would be enough to switch it back to the first stable state. On the other hand, force-
displacement curve in Fig. 9b for the two cosine curved centrally-clamped parallel 
beam mechanism for fixed-fixed boundary condition is clearly bistable. .  

 
 

 

 

 
 

              𝑤𝑤� = ℎ
2
�1 − cos �2𝜋𝜋𝑥𝑥

𝐿𝐿
��                𝑤𝑤� = ℎ

2
�1 − cos �2𝜋𝜋𝑥𝑥

𝐿𝐿
�� 

  
a. Design 1: Single cosine curve b. Design 2: Double cosine curve 

Fig. 9. Fixed-fixed boundary condition bistable mechanisms 

Fig. 10 shows bistable mechanisms for pinned-pinned boundary conditions. 
Here, single curved beams can be made bistable without the necessity to physically 
constraint the asymmetric mode. As seen, compared to the fixed-fixed case, the 
deformed plot and the force-displacement graphs show enhanced range of travel 
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between its two stable states and reduced switching force. Fig. 10b shows the 
optimized bistable curve for pinned-pinned boundary condition. Optimization was 
carried for maximum range of travel for a given actuation force taking first three 
mode weights, 𝐴𝐴1,𝐴𝐴2 and 𝐴𝐴3, as the design variables. 

 
 

   
 

𝑤𝑤� = ℎ sin �
𝜋𝜋𝜋𝜋
𝐿𝐿
� 𝑤𝑤� = 33.8 �0.4634 sin �

𝜋𝜋𝜋𝜋
𝐿𝐿
� + 0.0653 sin �

3𝜋𝜋𝜋𝜋
𝐿𝐿
�

− 0.0724 sin �
5𝜋𝜋𝜋𝜋
𝐿𝐿
�� 

  

  
a. Design 1: Sine curve b. Design 2 : Optimized curve  

Fig. 10. Pinned-pinned boundary condition bistable mechanisms 

 Prototypes of the mechanisms shown in Fig. 9 and Fig. 10 are shown in Fig. 11. 
Fig. 11a is the single cosine curve mechanism with fixed-fixed boundary condition. 
This mechanism isn’t bistable and hence has only one state. Fig. 11b is the double 
cosine curve mechanism with fixed-fixed boundary condition. This mechanism is 
bistable. We measure the apex height ℎ and the travel 𝑡𝑡𝑟𝑟 in each mechanism. As ℎ 
could be different in the prototypes, the ratio 𝑡𝑡𝑟𝑟

ℎ
 is an indicative of the travel between 

the two states factoring in the apex height. The greater the ratio, the greater the 
travel.  

 
a. Fixed-fixed single cosine curve monostable mechanism 

  
Prototype in state 1 Prototype in state 2 
b. Fixed-fixed double cosine curve mechanism [8] (𝑡𝑡𝑟𝑟

ℎ
= 18

11
= 1.64) 

  
Prototype in state 1 Prototype in state 2 

 c. Pinned-pinned sine curve mechanism (𝑡𝑡𝑟𝑟
ℎ

= 21
11

= 1.90) 
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Prototype in state 1 Prototype in state 2 

d. Pinned-pinned first three sine modes linear combination mechanism (𝑡𝑡𝑟𝑟
ℎ

= 30
11

= 2.72) 
Fig. 11. Fixed-fixed and pinned-pinned bistable mechanisms 

 
In Fig. 11c, the sine curve mechanism is shown. In this mechanism, the pin 

joints are used to add an appendage which would allow for lateral actuation. Fig. 11d 
shows an optimized mechanism for pinned-pinned boundary condition. This 
mechanism has the largest 𝑡𝑡𝑟𝑟

ℎ
 ratio.  

Fig. 12 shows a bistable mechanism with revolute flexures. The basic shape 
used is a cosine curve. Revolute flexures at both ends prevent axial motion but allow 
rotation. As with the case with pinned-pinned boundary conditions, the deformed 
shape and the force-displacement curve show enhanced range of travel between its 
two stable states and reduced switching force compared to the fixed-fixed case.  

 
a. Deformation plot of the mechanism 

 
b. FEA force-displacement curve 

 
c. Prototype in state 1 
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d. Prototype in state 2 

Fig. 12. Prototype of revolute flexure bistable mechanisms (𝑡𝑡𝑟𝑟
ℎ

= 17
8

= 2.215) 

4 Conclusions 
This paper proposed a methodology to investigate bistable mechanisms with 
compliant revolute flexures at both ends and to aide in their design. The flexures, 
being close to pinned-pinned boundary allow for the design of efficient bistable 
mechanisms, i.e., they allow the element to have enhanced range of travel between 
its two stable states, reduced switching force, and provision for secondary lateral 
actuation. Based on the analysis, we have synthesised and presented bistable 
mechanisms: two for pinned-pinned boundary condition and one with revolute 
flexures.  
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