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Abstract 
 

In the present study, the constrained inverse dynamics model using Newton-Euler 
approach has been developed for a realistic hexapod robot. For a more realistic 
locomotion analysis, oblique impact of feet-tip with the terrain is considered, which 
is governed by a compliant impact force model. It is assumed that the prescribed 
motion of the model is fully known and consistent with the kinematic constraints of 
the realistic model. The kinematic motion parameters (displacement, velocity and 
acceleration) obtained from the inverse kinematic analysis with specified path and 
gait planning for straight-forward motion in varying terrains are substituted in the 
inverse dynamic model to determine the dynamic motion parameters that are 
responsible to generate the prescribed motion trajectories. The solution is not unique 
due to the redundant set of forces/ moments and/or constraints used.  Therefore, the 
contact force distribution in the feet during interaction with the terrain is considered 
to be a constrained optimization problem, where  minimizing the sum of the squares 
of joint torques of the system has been considered as the objective function along 
with some linear equality and inequality constraints.  The paper also investigates the 
optimal feet forces’ distributions under body forces, joint torques, total power 
consumption etc. without any external disturbance during the robot’s locomotion on 
a staircase. 

Keywords: Hexapod Robot, Straight-Forward Motion, Staircase Climbing, Inverse 
Dynamics, Feet-Terrain Interaction, Optimization, and Power Consumption 

1 Introduction 
The performance of a robotic system to complete any assigned task depends on its 
physical contact with the surroundings.  Some examples are like the foot of a legged 
robot interacting with the terrain or colliding with obstacles during locomotion [1], 
robotic finger grasping an object [2], manipulators handling or colliding with foreign 
objects during operation in an unknown environment [3] etc. Therefore, modelling of 
contact including collision or impact is an important part of dynamic simulation of a 
robotic system. Most of the studies on contact simulation carried out by the previous 
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researchers worldwide on robotic systems assumed the contacting point as perfectly 
rigid [4-6]. But, it is to be remembered that for frictional contact surface with 
coulomb’s friction model or otherwise, the idea of objects as rigid bodies is not a 
realistic assumption. In few cases, it might lead to infeasible solutions to the 
problems. So, a few researchers also included compliance between the contacting 
bodies to avoid such problems arising from rigid body assumptions [1,7-9]. 
Simplified models of objects were studied to handle impacts, sustained contact under 
load and transitions conditions (to and from contact). The present study focuses on 
modeling the compliance between the leg tip and terrain at the region of contact for 
legged robots like the hexapod configuration. An attempt is made to develop the 
compliant contact force model with oblique impact of feet-tip with terrain for a 
realistic hexapod robotic system, which is far more a complex configuration. The 
normal component of the contact force model is analogous to the impact-based 
contact model used in MSC.ADAMS®, which again is the non-linear Hunt-Crossley 
model [10] subjected to some modifications. Also, it is to be noted that the tangential 
compliance between the leg tip and terrain is assumed to be negligible in the contact 
region, which is a case of no-slip condition.  

Further, it is necessary to develop a constrained inverse dynamics model to 
tackle the dynamics of the rigid bodies of the system [11, 12]. But, the models were 
simplified due to the complexities with respect to both the mechanical structure (a 
body and jointed legs) and locomotion planning (that is, path and gait planning) on 
varying terrains. Various approaches (Newton-Euler, Lagrange-Euler etc.) were used 
to study the dynamics of the systems, but the models neglected the coupling effects 
and non-linearity in the dynamics of the swing legs on the support legs and the trunk 
body. It is to be noted that the locomotion of a legged robot on rough and uneven 
terrain is a coupled dynamical problem, where the inertia effects of swing legs on 
support legs is an issue. The present study deals with such coupling effects during 
the robot’s locomotion. This makes the constrained inverse dynamic model more 
realistic and is illustrated with the help of a robot moving on an uneven terrain like 
climbing a staircase. Such a comprehensive dynamic model is crucial in the design, 
energy efficiency and control of legged robots. 

The solution to such type of problems is not unique due to the redundant set of 
forces/ moments and/or constraints used.  Therefore, the contact force distribution in 
the feet during interaction with the terrain is considered to be a constrained 
optimization problem. The optimization methods implemented by various 
researchers to obtain the feet forces and study the dynamics of the legged robots 
include linear programming [13], quadratic programming [14, 15], pseudo inverse 
[16] or additional constraint equation to create a determinate set [17]. In the present 
study, a naturalistic objective function imposed is the minimization of the sum of 
squares of the joint torques to determine contact foot-force distribution, joint torques 
and total power consumption of the robotic system. In section 2 of this paper, the 
constrained rigid body dynamics model of a hexapod robotic system is presented. 
This is followed by the description of a non-linear contact force model with impact 
during foot-terrain interaction of the robot for a deformable foot (hard) versus hard 
(little deformation) terrain in Section 3. Section 4 describes the quadratic 
optimization methodology. Lastly, in Section 5 an illustrative example of foot 
contact with the terrain for a staircase climbing robot demonstrates the ability of the 
model to simulate feet forces in a hexapod robot during impact, support and lift-off.  
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2 Constrained Rigid Body Dynamics of the System 
In the present study, a realistic 3D hexapod, with the configuration shown in Fig. (1), 
climbing up a staircase is considered. The hexapod consists of a trunk body and six 
legs. Each leg consists of three revolute joints, which are independently controlled 
by three actuators. Therefore, the hexapod can be considered as a robotic system 
having twenty four degrees of freedom (six DOF of the body and eighteen degree of 
freedom of all the legs taken together). The system has two global reference frames: 
1) Static Global reference frame G0, 2) Dynamic Global reference frame G with 
respect to XYZ coordinate system. The frames are chosen such that G is the working 
frame of reference and G0 is fixed frame of reference, which defines the topography 
(slope, elevation etc.). In the present problem both the frames are parallel and 
coincides at origin O. Further, the trunk body has a body fixed reference frame L0 
with origin at P0. All the bodies in the system are assumed rigid with the joint 
variables of each leg as θi1-βi2-βi3 corresponding to local axes configuration. Also, 
the orientation vectors of Bryant angles are: 1) ηG= [αG βG θG]T between G0 and G 
and 2) η0= [α0 β0 θ0]T between G and L0. Therefore, the vectors of Cartesian 
coordinates of P0 with respect to G are represented by 

00 0
6(  , )G G

P O ∈=p r η where 

0 0 0 0
[ ]G G G G T

P O P O P O P Ox y z=r . 

 
Figure 1: CAD Model of a realistic hexapod climbing up the staircase 

Inverse kinematic analysis of the robotic system is carried out for a predefined 
three-dimensional (3D) trunk body motion, swing leg trajectory planning of the feet-
tip as well as gait planning with straight-forward motion in varying terrains to 
calculate the angular displacement of the various joints (i=1 to 6, j=1 to 3) and 
finally the kinematic motion parameters like velocity, acceleration, aggregate center 
of mass etc. The essential robot model parameters and the locomotion parameters are 
as listed in Table 1. The parameters are subsequently transformed from reference 
frame G to frame G0 (refer to [18] for details). Kinematic analysis of the system is 
followed by inverse dynamic analysis to compute some of the important parameters 
like optimal distribution of feet forces, joint torques, power consumption etc. of the 
system. The constrained inverse dynamic model of the system is developed using 
Newton-Euler approach. The implicit constrained dynamic equation of the robotic 
system is given by the expression: 

 M(p). v = cf + f (p, v) + qGC (p, v) 114∈   (1) 

where M(p) 114,114∈  is the combined mass matrix of the robotic system; v, v  
24∈ are the velocity and acceleration vector of the system in cartesian space; cf 
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114∈ being the vector of constant reaction forces and torques of the joints 
associated with system coordinates; f (p, v) 114∈  is the vector of both known and 
unknown applied forces and torques; qGC (p, v) 114∈ is the vector of centrifugal 
forces and gyroscopic terms.  

Table 1: System Parameters of the Robot  

 The implicit constraint dynamic Eq. (1) is expressed in complete cartesian 
coordinates (p), which is often undesirable, since handling of the large number of 
equations is cumbersome and computationally intensive. Therefore, the kinematic 
motion parameters in cartesian space are transformed by kinematic transformation to 
the joint space in terms of generalized coordinates (q), where q ϵ [

0
G
P Or , η0, θ11, β12, 

β13, θ21, β22, β23, θ31, β32, β33, θ41, β42, β43, θ51, β52, β53, θ61, β62, β63]T 24∈ such that 
 v = Ju (2) 

The final form of transformation of the dynamic model in the joint space is given by 
the following relation: 

 ( ) +D q u C(q,q) = τ 24∈  (3) 

where, D(q) = JTM(p) J 24 24×∈  (4) 

 T=C(q,q) J M(p)Ju 24∈ , (5) 

 τ = JT[ f (p, v) + qGC (p, v)] 24∈ , (6) 

Here u and u  24∈ are the velocity and acceleration vector of the system in joint 
space; J 114,24∈  is the Jacobian matrix of the system in terms of generalized 
coordinates (q) related to ground reaction forces and coupled joint torques; D(q) is 
the coupled mass and inertia matrix of the robotic system in terms of generalized 

Robot model parameters Locomotion 
Parameters 

Foot-Ground 
Parameters 

Para-
meters  Values Para-

meters Values Para-
meters Values 

(i=1 to 6) Trunk 
body 

Pay- 
load Link i1 Link i2 Link i3 Hmin 0.07m e 2.2 

Mass (Kg) 0.65 4.244 0.150 0.041 0.110 ∆h 0.002m K 1e+5N/m 

Ixx 1.66E-2 9E-3 7.1E-5 2.0 E-5 9.8E-5 s0 0.125m Cmax 10N-s/m 

Iyy 2.52E-3 3E-3 10.8E-5 8.7 E-5 8.7E-5 vyz
 0.1m/s p 0.01mm 

Izz 1.69E-2 11E-3 5.7E-5 10.0 E-5 2.1E-5 hs 0.05m μi 0.3 

Length(m) 0.495 0.150 0.085 0.120 0.100 bs 0.25m   
Joint offsets: di1=0.008m, di2=0.018m; di3=0.02m; Hmin : maximum terrain height (on the path of swing); 
∆h:  swing height over and above the maximum terrain height,; s0= stroke of trunk body; vxz: maximum 
translational velocity of the trunk body along the fixed slope of the staircase with respect to frame G;  hs: 
height of each staircase;  bs: width of the each staircase; Ixx ,  Iyy  and  Izz : mass moment of inertia values 
of the individual components (Kg-m2) along their respective axes; Material density (Aluminium)=2740 
Kg/m3, n: duty cycle, i: leg number,  e: force exponent (mostly material property, e>1 for non-linear 
spring); K: contact stiffness which is based on both material properties (young’s modulus and poisson’s 
ratio) and geometrical properties (radius of curvature), Cmax: maximum damping; p: boundary penetration 
at which full damping is applied (reasonable, p < z1),  μi: coefficient of static friction in leg i.
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coordinates; τ is the vector of ground reaction forces (Fi) and coupled joint torques 
(Mi) i= 1 to 6. Further, the ground reaction force Fi at the foot of leg i with respect to 
G0 is denoted by vector [Fix Fiy  Fiz] and the vector of coupled joint torques Mi of leg i 
is denoted by [Mi1 Mi2 Mi3]T. Overall, twenty four number of equations are obtained 
in terms of ground reaction forces and coupled joint torques by substituting the 
necessary input values in (3). 

3 Non-Linear Contact Model with Impact Response 
To simplify the dynamic analysis, it is assumed that both the feet and terrain are rigid 
except for an infinitesimally small region surrounding the contact point, where 
compliance between the contacting bodies is included. The contact point is assumed 
to be governed by a visco-elastic model. For oblique impact between the feet-tip and 
terrain, the impact force F (refer to Fig. (2)) is composed of two components (normal 
and tangential direction), that is, (i) compliant normal impact force Fv and (ii) 
compliant horizontal impact force Fh.  

In the present study, the normal force model is analogous to the impact-based 
contact model used in MSC.ADAMS® and is basically the non-linear Hunt-Crossley 
model [10] subjected to some modifications. The force Fv for a deformable foot 
(hard) and hard (little deformation) terrain is governed by an impact function that 
depends mainly on the foot’s deformation, its velocity, contact stiffness, damping 
etc. Hence, the normal impact force is given by, 

 
1

11 max 1 1

0
( ) . . ( , ,1, ,0)ev

z z
z zK z z C z STEP z z p z

⎧ ⎫ >= ⎨ ⎬ ≤− − −⎩ ⎭
F  

(7) 

where the step function is governed by a cubic polynomial such that,  
 STEP (z, z1-p, 1, z1, 0) ≡ ( )( )21 . 3 2z za− Δ − Δ . (8) 

 

 
Figure 2: Foot-terrain model (a) before impact (b) after impact [h is the distance 
between the center of mass (CM) of the portion of the pad in contact and the 
ground; Fiz is the normal foot reaction force] 

Here, 1 0 1a = − = ; ( )1z z z p pΔ = − + ; z is the distance function, z1 is the 
trigger distance; z  is the derivative of z to impact; K and Cmax are as described in the 
Table 1. Further, it is assumed that tangential compliance of the leg tip and the 
terrain is negligible in the contact region, which is a case of no-slip condition. It can 
also be seen that when z ≤ z1, the impact function activates, that is, when the distance 
between the two objects is smaller than the free length of z (refer to Fig. (2)). 
Subsequently, the force becomes non-zero and consists of two parts: an exponential 
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spring force and a damping force that follows a step function as mentioned above. It 
should be noted that both the forces are strictly positive, since the calculated normal 
force opposes the compression that occurs during penetration.

 

4 Optimization Criteria for Optimal Distribution of 
Joint Torques 
The solution to the problem is to be obtained by optimization through quadratic 
programming, that is, minimizing the sum of squares of joint torques of the system, 
which is considered as the objective function with respect to linear equality and 
inequality constraints. Therefore, objective function is expressed as follows: 

 Minimize 6 3 2
1 1 ( )iji j M t
= =

Φ = ∑ ∑  (9) 

subject to (a) inequality and (b) equality constraints (for details of the constraints,  
refer to [19]). 

  Here, Mij(t) is the joint torque variable and is a function of primary variables 
known as the foot force Fi. Substituting the value of Mij(t) and rearranging, the Eq. 
(9), the objective function can be expressed in the standard form, as given below. 

 Minimize ˆ 2T TΦ = +x Hx C x  (10) 

where Ĥ is a hessian square matrix that includes the coefficients of all the quadratic 
terms; C is the column matrix that includes the coefficient of all the linear terms and 
x is the composite contact force vector  of the objective function. 

5 Simulations- Staircase Climbing Hexapod Robot 
In the present study, at first, the kinematics of the system is analysed to determine 
the kinematic parameters. Thereafter, multibody dynamic analysis of the system is 
carried out with the motion inputs obtained from the kinematics study.  

The position and orientation of the initial configuration of the robot are provided 
as inputs to the system. Here, the frame G0 and G are assumed to be parallel and they 
coincide at origin O, that is, ηG = (0, 0, 0) T. Also, it is assumed that the robot’s trunk 
body remains parallel to the slope of the staircase at any instant of time. Therefore, 
the value of angle α0 is determined from the relationship , as given below. 

 α0=tan-1(hs / bs) (11) 
Since the robot is assumed to be parallel to the slope at any instant of time during 
locomotion, the other angles that is, β0= θ0=0. Hence, at time t=0, the position and 
orientation of P0 with respect to global frame G are given by 0

Gp  = {0, 0.412, 0.235, 
tan-1(hs / bs), 0, 0} T. The corresponding initial joint angles are calculated from the 
CAD model. Also, it is assumed that there is no slippage between foot-tip and 
ground, as the robot climbs upstairs. 

The kinematic analysis is carried out in MATLAB solver for three duty cycles 
with time step h=0.05. The total simulation time to execute the motion of the robot 
for three duty cycles is 8.6s (1st cycle- 3.0s, 2nd cycle- 2.6s, 3rd cycle- 3s). The 
calculated kinematic motion parameters (position, velocity and acceleration) of the 
tip point Pi3 (i=1 to 6), based on the motion and gait planning algorithm (refer to 
[18]) are provided as inputs to the inverse dynamic analysis of the system. The 
MATLAB optimization solver chosen in the present case is interior-point-convex 
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quadprog algorithm that satisfies the boundary conditions at each iteration 
corresponding to the objective function. The torque is limited to ±6Nm.  

The computed results of the force distribution in the legs, joint torques, power 
consumptions are plotted over three gait cycles with a total cycle time of 8.6s. Figure 
3 shows the normal feet-force component Fiz of all the six legs of the hexapod plotted 
against time at an interval of h=0.05s. For a tripod wave-gait, the support and swing 
phase times are equal for all the legs following a sequence: 1) legs 1-4-5 in support 
phase and legs 2-3-6 in swing phase; 2) legs 2-3-6 in support phase and legs 1-4-5 in 
swing phase (refer to Fig. 1 for the leg numbering sequence).  

A close observation of the Fig. 3(a) reveals that the pattern of the reaction foot 
force Fiz experienced by the legs 1-2, 3-4 and 5-6 are similar except that the pattern is 
out of phase by 1800. This may be attributed to the fact that wave gaits are regular 
and symmetric, with the right and left legs of each column having a phase difference 
of a half-cycle. When the legs are lifted during swing phase, the forces on leg tips are 
zero and denoted by straight line. Further, it is observed that as the trunk body climbs 
upstairs with straight-forward motion, the entire center of gravity of the hexapod will 
move forward. Hence, feet forces on the front leg, which is in support phase, will 
increase while that on the rear leg will decrease with time till the start of swing 
phase. In addition to the above, it is also seen that the sum of all the feet forces along 
z-direction with respect to G0 balances the weight of the hexapod (65.7 N) at any 
instant of time (Fig.3a) except at the time of impact. A close view of the graph is 
shown in Fig. 3(b), from where one can infer that the when the leg tip collides with 
the terrain (start of support phase), a momentary impulsive force is generated.  

 
Figure 3: Normal Feet force distribution for duty factor DF=1/2 during staircase 
climbing (a) all legs with respect to frame G0 (b) Close view depicting the 
momentarily normal impact force for the legs 3 and 4. 

Figure 4 shows the joint torques in legs 1 and 2. The torques in support phase 
take significant values, while in swing phase they are close to zero. Moreover, during 
the entire duration of climb, the torque distribution in joint 1 is minimum of the three 
joints for each leg. It is also observed that the joint 2 experiences maximum torque 
compared to the other joints at any instant of time. Further, the effect of the 
impulsive force can be well observed in the joint torque distribution of the legs. 
There are momentarily sharp changes (increase or decrease) in the values of torques. 
The variations of instantaneous power (Pin) consumption throughout a locomotive 
cycle of the hexapod are shown in Fig. 5. The highest peak arises at the time, when 
the swing and support legs change stance.  
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Figure 4: Joint Torque distribution for duty factor DF=1/2 during staircase 
climbing (a) Leg 1, (b) Leg2 

 

Figure 5: Instantaneous power consumption (Pin) of all the joints 

6 Conclusions 
The simulation results establish the impact-based feet-terrain interaction model 
without slippage or sliding of the feet-tip with respect to regular uneven terrain (like 
a staircase) for a constrained inverse dynamical system. Optimal feet-force 
distributions in the legs, corresponding to minimization of the sum of squares of joint 
torques are computed using quadratic programming. Momentary spikes are observed 
in the force versus time plot, which depicts the impulsive collision at the instant  
when the leg tip strikes the ground. Significant changes in the torque and overall 
power consumption are also observed during collision. The effects of impact and slip 
on energy efficiency with different gait patterns and walking speeds will be studied 
in the future. 
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